首页> 外文OA文献 >Estimation of spruce needle-leaf chlorophyll content based on DART and PARAS canopy reflectance models
【2h】

Estimation of spruce needle-leaf chlorophyll content based on DART and PARAS canopy reflectance models

机译:基于DART和PARAS冠层反射率模型的云杉针叶叶绿素含量估算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Needle-leaf chlorophyll content (Cab) of a Norway spruce stand was estimated from CHRIS-PROBA images using the canopy reflectance simulated by the PROSPECT model coupled with two canopy reflectance models: 1) discrete anisotropic radia- tive transfer model (DART); and 2) PARAS. The DART model uses a detailed description of the forest scene, whereas PARAS is based on the photon recollision probability theory and uses a simplified forest structural description. Subsequently, statisti- cally significant empirical functions between the optical indices ANCB 670 − 720 and ANMB 670 − 720 and the needle-leaf Cab content were established and then applied to CHRIS-PROBA data. The Cab estimating regressions using ANMB 670 − 720 were more robust than using ANCB 670 − 720 since the latter was more sensitive to LAI, especially in case of PARAS. Comparison between Cab esti- mates showed strong linear correlations between PARAS and DART retrievals, with a nearly perfect one-to-one fit when using ANMB 670 − 720 (slope = 1.1, offset = 11 μ g · cm − 2 ). Further com- parison with Cab estimated from an AISA Eagle image of the same stand showed better results for PARAS (RMSE = 2.7 μ g · cm − 2 for ANCB 670 − 720 ;RMSE = 9.5 μ g · cm − 2 for ANMB 670 − 720 )than for DART (RMSE = 7.5 μ g · cm − 2 for ANCB 670 − 720 ;RMSE = 23 μ g · cm − 2 for ANMB 670 − 720 ). Although these results show the potential for simpler models like PARAS in estimating needle-leaf
机译:使用PROSPECT模型模拟的冠层反射率和两个冠层反射率模型,通过CHRIS-PROBA图像估算挪威云杉林分的针叶叶绿素含量(Cab):1)离散各向异性辐射转移模型(DART);和2)PARAS。 DART模型使用森林场景的详细描述,而PARAS基于光子碰撞概率理论并使用简化的森林结构描述。随后,建立了光学指标ANCB 670 – 720和ANMB 670 – 720之间的具有统计意义的重要经验函数,并且针叶Cab含量被应用于CHRIS-PROBA数据。使用ANMB 670-720的Cab估计回归比使用ANCB 670-720的鲁棒性更高,因为后者对LAI更为敏感,尤其是在PARAS的情况下。驾驶室估计值之间的比较显示,在PARAS与DART检索之间存在很强的线性相关性,当使用ANMB 670 – 720(斜率= 1.1,偏移量= 11μg·cm − 2)时,几乎是一对一的拟合。根据同一展位的AISA Eagle影像估算出的驾驶室的进一步比较显示,PARAS的结果更好(ANCB 670-720的RMSE = 2.7μg·cm-2; ANMB 670-的RMSE = 9.5μg·cm-2 720)比DART(ANCB 670-720的RMSE = 7.5μg·cm-2; ANMB 670-720的RMSE = 23μg·cm-2)。尽管这些结果显示了像PARAS这样的简单模型在估计针叶中的潜力

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号